Abstract
Machine learning has permeated all fields of research, including chemistry, and is now an integral part of the design of novel compounds with desired properties. In the field of asymmetric catalysis, the preference still lies with models based on a physical understanding of the catalysis phenomenon and the electronic and steric properties of catalysts. However, such models require quantum chemical calculations and are thus limited by their computational cost. Here, we highlight the recent advances in modeling catalyst selectivity by using the 2D structures of catalysts and substrates. While these have a less explicit mechanistic connection to the modeled property, 2D descriptors, such as topological indices, molecular fingerprints, and fragments, offer the tremendous advantages of low cost and high speed of calculations. This makes them optimal for the in-silico screening of large amounts of data. We provide an overview of common quantitative structure-property relationship workflow, model building and validation techniques, applications of these methodologies in asymmetric catalysis design, and an outlook on improving the understanding of 2D-based models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.