Abstract

A method for converting any nesting DFT algorithm to the type-I discrete W transform (DWT-I) is introduced. A nesting algorithm that differs from either the Windograd Fourier transform algorithm (WFTA) or the prime factor FFT algorithm (PFA) is presented. New small-N DETs, which are suitable for this nesting algorithm, are developed based on using sparse matrix decomposition. The proposed algorithm is more efficient that either WFTA or PFA for large N, and it is more flexible for the choice of transform length, because 32 points are used. For 2D processing, the proposed algorithm is more efficient than the polynomial transform.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call