Abstract

In biomedical magnetic induction tomography (MIT), measurement precision may be improved by incorporating some form of primary field compensation/cancellation scheme. Schemes which have been described previously include gradiometric approaches and the use of ‘back-off’ coils. In each of these methods, however, the primary field cancellation was achieved only for a single transmitter/receiver combination. For the purpose of imaging, it would be desirable for a fully electronically scanned MIT system to provide a complete set of measurements, all with the primary field cancelled. A single channel suitable for incorporation into an MIT system with planar-array geometry is described. The transmitter is a 6-turn coil of wire 5 cm in diameter. The receiver is a surface mount inductor, of inductance 10 µH, mounted such that, in principle, no net primary field flux threads it. The results of measurements carried out with the single channel system suggest that the signal due to the primary excitation field can be reduced on average by a factor of 298 by the sensor geometry over the operating frequency range 1–10 MHz. The standard deviation and drift of the signal with the system adjusted for maximum primary field cancellation, expressed as a percentage of the signal when the receiver coil was rotated until its axis of sensitivity lay along the primary field, were 0.0009% and 0.009%, respectively. The filter time constant used was 30 ms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.