Abstract

This paper presents a new and high performance solution method for multistage stochastic convex programming. Stochastic programming is a quantitative tool developed in the field of optimization to cope with the problem of decision-making under uncertainty. Among others, stochastic programming has found many applications in finance, such as asset-liability and bond-portfolio management. However, many stochastic programming applications still remain computationally intractable because of their overwhelming dimensionality. In this paper we propose a new decomposition algorithm for multistage stochastic programming with a convex objective and stochastic recourse matrices, based on the path-following interior point method combined with the homogeneous self-dual embedding technique. Our preliminary numerical experiments show that this approach is very promising in many ways for solving generic multistage stochastic programming, including its superiority in terms of numerical efficiency, as well as the flexibility in testing and analyzing the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.