Abstract

Based on solving an equivalent parametric equality constrained mini-max problem of the classic logarithmic-barrier subproblem, we present a novel primal-dual interior-point relaxation method for nonlinear programs with general equality and nonnegative constraints. In each iteration, our method approximately solves the KKT system of a parametric equality constrained mini-max subproblem, which avoids the requirement that any primal or dual iterate is an interior-point. The method has some similarities to the warmstarting interior-point methods in relaxing the interior-point requirement and is easily extended for solving problems with general inequality constraints. In particular, it has the potential to circumvent the jamming difficulty that appears with many interior-point methods for nonlinear programs and improve the ill conditioning of existing primal-dual interior-point methods as the barrier parameter is small. A new smoothing approach is introduced to develop our relaxation method and promote convergence of the method. Under suitable conditions, it is proved that our method can be globally convergent and locally quadratically convergent to the KKT point of the original problem. The preliminary numerical results on a well-posed problem for which many interior-point methods fail to find the minimizer and a set of test problems from the CUTEr collection show that our method is efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.