Abstract

In this paper, we develop a primal-dual central trajectory interior-point algorithm for symmetric programming problems and establish its complexity analysis. The main contribution of the paper is that it uniquely equips the central trajectory algorithm with various selections of the displacement step while solving symmetric programming. To show the efficiency of the proposed algorithm, these selections of calculating the displacement step are compared in numerical examples for second-order cone programming, which is a special case of symmetric programming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.