Abstract

Non-conforming domain decomposition methods provide a powerful tool for the numerical approximation of partial differential equations. For the discretization of a non-linear multibody contact problem, we use the mortar approach with a dual Lagrange multiplier space. To handle the non-linearity of the contact conditions, we apply a primal–dual active set strategy to find the actual contact zone. The algorithm can be easily generalized to multibody contact problems. A suitable basis transformation guarantees the same algebraic structure in the multibody situation as in the one body case. Using an inexact primal–dual active set strategy in combination with a multigrid method yields an efficient iterative solver. Different numerical examples for one and multibody contact problems illustrate the performance of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.