Abstract

BackgroundThe C-terminal tetratricopeptide (TPR) repeat domain of Pex5p recognises proteins carrying a peroxisomal targeting signal type 1 (PTS1) tripeptide in their C-terminus. Previously, structural data have been obtained from the TPR domain of Pex5p in both the liganded and unliganded states, indicating a conformational change taking place upon cargo protein binding. Such a conformational change would be expected to play a major role both during PTS1 protein recognition as well as in cargo release into the peroxisomal lumen. However, little information is available on the factors that may regulate such structural changes.ResultsWe have used a range of biophysical and computational methods to further analyse the conformational flexibility and ligand binding of Pex5p. A new crystal form for the human Pex5p C-terminal domain (Pex5p(C)) was obtained in the presence of Sr2+ ions, and the structure presents a novel conformation, distinct from all previous liganded and apo crystal structures for Pex5p(C). The difference relates to a near-rigid body movement of two halves of the molecule, and this movement is different from that required to reach a ring-like conformation upon PTS1 ligand binding. The bound Sr2+ ion changes the dynamic properties of Pex5p(C) affecting its conformation, possibly by making the Sr2+-binding loop – located near the hinge region for the observed domain motions – more rigid.ConclusionThe current data indicate that Pex5p(C) is able to sample a range of conformational states in the absence of bound PTS1 ligand. The domain movements between various apo conformations are distinct from those involved in ligand binding, although the differences between all observed conformations so far can be characterised by the movement of the two halves of Pex5p(C) as near-rigid bodies with respect to each other.

Highlights

  • The C-terminal tetratricopeptide (TPR) repeat domain of Pex5p recognises proteins carrying a peroxisomal targeting signal type 1 (PTS1) tripeptide in their C-terminus

  • As in the previous apo-Pex5p(C) structure [9], the N-terminal half of the tetratricopeptide repeats (TPRs) domain is less ordered than the Cterminal region

  • Our data strongly suggest a dynamic nature for Pex5p(C), such that the two halves of the TPR domain preferably move as near-rigid bodies related by a single

Read more

Summary

Introduction

The C-terminal tetratricopeptide (TPR) repeat domain of Pex5p recognises proteins carrying a peroxisomal targeting signal type 1 (PTS1) tripeptide in their C-terminus. Structural data have been obtained from the TPR domain of Pex5p in both the liganded and unliganded states, indicating a conformational change taking place upon cargo protein binding. Such a conformational change would be expected to play a major role both during PTS1 protein recognition as well as in cargo release into the peroxisomal lumen. While the N-terminal half of Pex5p has been found to be intrinsically unstructured [4,5], the C-terminal domain of Pex5p, hereafter referred to as Pex5p(C), consists almost entirely of tandemly repeated helix-loop-helix tetratricopeptide repeats (TPRs) which are commonly found as mediators of protein-protein interactions (reviewed in [6]) It is this C-terminal domain that recognises PTS1bearing translocation substrates. While in PTS1-liganded structures, the TPR array of Pex5p(C) is "ring-like", a more loose "snail-like" arrangement is found in apo-Pex5p(C) [5,9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call