Abstract

Resolving thin layers and clearly delineating layer boundaries in inverted seismic sections are very important goals for exploration and production. Many seismic inversion methods based on a least-squares optimization approach with Tikhonov-type regularization can lead to unfocused transitions between adjacent layers. A basis pursuit inversion (BPI) algorithm based on the [Formula: see text] norm optimization method can, however, resolve sharp boundaries between layers. We have formulated a BPI algorithm for amplitude-versus-angle inversion and investigated its potential to improve contrasts between layers. Like the BPI for poststack case, the sparse layer constraint, rather than the sparse spike constraint, is used to construct the model space as a wedge dictionary. All the elements of the dictionary are bed reflectivities, which include solutions consisting of thin beds as well. With this dictionary, we use an [Formula: see text] norm optimization framework to derive three reflectivities, namely, [Formula: see text], [Formula: see text], and [Formula: see text]. Although BPI does not require a starting model, high-resolution absolute velocities ([Formula: see text], [Formula: see text]) and density ([Formula: see text]) can be obtained by incorporating initial models in the BPI derived reflectivities. Tests on synthetic and field data show that the BPI algorithm can indeed detect and enhance layer boundaries by effectively removing the wavelet interference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.