Abstract

We investigate the thermomechanical response of semi-crystalline polyethylene under shock compression by performing molecular dynamics (MD) simulations using a new coarse-graining scheme inspired by the embedded atom method. The coarse-graining scheme combines the iterative Boltzmann inversion method and least squares optimization to parameterize interactions between coarse-grained sites, including a many-body potential energy designed to improve the representability of the model across a wide range of thermodynamic states. We demonstrate that a coarse-grained model of polyethylene, calibrated to match target structural and thermodynamic data generated from isothermal MD simulations at different pressures, can also accurately predict the shock Hugoniot response. Analysis of the rise in temperature along the shock Hugoniot and comparison with analytical predictions from the Mie-Grüneisen equation of state are performed to thoroughly explore the thermodynamic consistency of the model. As the coarse-graining model affords nearly two orders of magnitude reduction in simulation time compared to all-atom MD simulations, the proposed model can help identify how nanoscale structure in semi-crystalline polymers, such as polyethylene, influences mechanical behavior under extreme loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.