Abstract
An unstructured grid, finite volume method is presented for the solution of two-dimensional viscous, incompressible flow. The method is based on the pressure-correction concept implemented on a semi-staggered grid. The computational procedure can handle cells of arbitrary shape, although solutions presented herein have been obtained only with meshes of triangular and quadrilateral cells. The discretization of the momentum equations is effected on dual cells surrounding the vertices of primary cells, while the pressure-correction equation applies to the primary-cell centroids and represents the conservation of mass across the primary cells. A special interpolation scheme s used to suppress pressure and velocity oscillations in cases where the semi-staggered arrangement does not ensure a sufficiently strong coupling between pressure and velocity to avoid such oscillations. Computational results presented for several viscous flows are shown to be in good agreement with analytical and experimental data reported in the open literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.