Abstract

Many outstanding questions about the evolution and function of fish morphology are linked to swimming dynamics, and a detailed knowledge of time-varying forces and torques along the animal’s body is a key component in answering many of these questions. Yet, quantifying these forces and torques experimentally represents a major challenge that to date prevents a full understanding of fish-like swimming. Here, we develop a method for obtaining these force and torque data non-invasively using standard 2D digital particle image velocimetry in conjunction with a pressure field algorithm. We use a mechanical flapping foil apparatus to model fish-like swimming and measure forces and torques directly with a load cell, and compare these measured values to those estimated simultaneously using our pressure-based approach. We demonstrate that, when out-of-plane flows are relatively small compared to the planar flow, and when pressure effects sufficiently dominate shear effects, this technique is able to accurately reproduce the shape, magnitude, and timing of locomotor forces and torques experienced by a fish-like swimmer. We conclude by exploring of the limits of this approach and its feasibility in the study of freely-swimming fishes.

Highlights

  • Fishes display a remarkable array of morphologies, which they use to play many different types of ecological roles, from grazers to apex predators

  • We demonstrate that, when out-of-plane flows are relatively small compared to the planar flow, and when pressure effects sufficiently dominate shear effects, this technique is able to accurately reproduce the shape, magnitude, and timing of locomotor forces and torques experienced by a fish-like swimmer

  • We described an experimental method for obtaining time-varying swimming force and torque data using standard 2D digital particle image velocimetry (DPIV) in conjunction with a pressure field algorithm

Read more

Summary

Introduction

Fishes display a remarkable array of morphologies, which they use to play many different types of ecological roles, from grazers to apex predators. This diversity in form and function has arisen from many selective pressures, and a number of these pressures are related to locomotion [1,2,3,4]. Many outstanding questions about the relationships between form and function in fish are biomechanically-driven.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call