Abstract
The steady state Navier–Stokes equations are solved in transonic flows using an elliptic formulation. A segregated solution algorithm is established in which the pressure correction equation is utilized to enforce the divergence-free mass flux constraint. The momentum equations are solved in terms of the primitive variables, while the pressure correction field is used to update both the convecting mass flux components and the pressure itself. The velocity components are deduced from the corrected mass fluxes on the basis of an upwind-biased density, which is a mechanism capable of overcoming the ellipticity of the system of equations, in the transonic flow regime. An incomplete LU decomposition is used for the solution of the transport-type equations and a globally minimized residual method resolves the pressure correction equation. Turbulence is resolved through the k–e model. Dealing with turbomachinery applications, results are presented in two-dimensional compressor and turbine cascades under design and off-design conditions. © 1997 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.