Abstract

This paper studies the numerical solution of a two-dimensional quenching type nonlinear reaction-diffusion problem via dimensional splitting. The variable coefficient differential equation considered possesses a nonlinear forcing term, and may lead to strong quenching singularities that have profound multiphysics and engineering applications to the energy industry. Our investigations focus on the construction and preservative properties of a semi-adaptive Peaceman-Rachford procedure for solving the aforementioned problem. In the study, the multidimensional differential equation is decomposed into single dimensional subequations so that the computational efficiency can be effectively raised. Temporal adaptation is implemented through arc-length estimations of the rate-of-change of the numerical solution. The positivity, monotonicity and localized linear stability of the variable step splitting scheme are analyzed. These ensure key preservations of underlying physical features of the computed approximations for applications. Computational experiments are presented to illustrate our results as well as to demonstrate the viability and accuracy of the splitting method for solving singular quenching-combustion problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.