Abstract
Computer science implements algorithms and techniques to automate problem-solving solutions. Due to the chemical versatility of organic building blocks, many organic semiconductors have been utilized for organic solar cells (OSCs). The computational methods can potentially drive experimentalists to discover and design high-performance materials. OSCs' objective is the performance of their energy conversion efficiency and stability. One idea that has improved efficiency and stability is that of ternary systems, known as ternary organic solar cells (TOSCs). The photoactive layer in TOSCs is formed by mixing three distinct components together. This review is about the employment of computational approaches for investigating TOSCs. Here, we outlined the basics of computational methods and standard application procedures. This article offers a concise overview of various computational algorithms, relevant software, and tools. Additionally, it examines the present state of research regarding computations in TOSCs. The challenges associated with TOSCs, including intricacy metrics, diverse chemical structures, and programming skills, are discussed. Furthermore, we suggest some ways to improve the utility of computation in TOSCs research enterprises.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.