Abstract

Soil quality assessment has been recognized as an important step toward understanding the long-term effects of conservation practices within agricultural watersheds. Our objective was to assess soil quality within the South Fork watershed of the Iowa River using various indicators and assessment approaches. Soil samples were collected during 2003 and 2004 from 29 areas of 32 ha (80 acres) each along two transects traversing the watershed. Soil pH, Mehlich III extractable P, K, Ca and Mg, electrical conductivity (EC), total organic carbon (TOC), and total N (TN) were measured. The Soil Management Assessment Framework (SMAF) was used to compute a soil quality index (SQI), while soil loss, the soil tillage intensity rating (STIR), N-leaching potential, and soil conditioning index (SCI) were determined for each sampling area using the 2003 version of the Revised Soil Loss Equation (RUSLE2). Overall, there were no soil fertility limitations within the watershed based on an average pH of 6.96 and extractable P and K levels of 36 and 162 mg kg −1, respectively. Soil loss, STIR, N-leaching, and SCI averaged 1.13 Mg ha −1, 68, 3, and 0.4, respectively. The SMAF analysis indicated soils within the watershed were functioning at 87% of their full potential. The lowest indicator score was associated with TOC (0.60) because the average value was only 28.4 g kg −1. The SCI and SQI indices were positively correlated although since it used measured data, the SMAF appears to provide more information about the effects of management practices within the watershed. Soils in upper landscape positions had lower TOC and C:N ratios indicating an increased risks for both erosion and for nitrate leaching. Management of soils on hilltops may be the most effective way to minimize N and P losses within the watershed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call