Abstract

Drug abuse has become a global problem. The mass spectrometry-based metabolic consequences of ketamine administration in anesthesia and therapy have been well studied, but to the best of our knowledge, metabolomic studies of ketamine abuse based on nuclear magnetic resonance (NMR) spectroscopy are still lacking. In this study, twenty Sprague–Dawley rats were randomly assigned into two groups: a control group ( n = 10) and a ketamine group ( n = 10). The animals in the ketamine group received intraperitoneal injections of ketamine twice daily at 12-h intervals at progressively increasing doses over a period of 9 days, while the control group received an equal volume of saline. The urine samples were collected for 24 h at days 0, 1, 3, 5, 7, and 9 for the metabolomics study. The metabolic changes in urine after short-term ketamine administration were analyzed by proton NMR coupled with multivariate statistical analysis. The results indicated that short-term ketamine exposure led to significant alterations of the metabolites in the urine of the rats. Specifically, 1,3,7-trimethyluric acid, 1,3-dimethyluric acid, acetoacetic acid, acetylglycine, creatine, sarcosine, dimethylglycine, glycine, and theobromine were significantly increased in the urine. Significant changes were also found in metabolites related to antioxidant and energy metabolism, including acetoacetic acid, succinate, 1,3,7-trimethyluric acid, 1,3-dimethyluric acid, creatine, and taurine. Our findings indicated that short-term ketamine administration leads to disorder of energy metabolism and oxidative stress. In addition, the modified metabolites identified could serve as the new biological markers and potential biological indices reflecting the underlying mechanism of ketamine abuse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.