Abstract

In the path towards decarbonization, rechargeable lithium-ion batteries are critical for the widespread adoption of electric vehicles and renewable energy storage systems. To meet the growing demand for this mineral, various sources of lithium are being explored. This study evaluated the technical and economic feasibility of direct lithium extraction (DLE) from flowback and produced waters (FPW) of the Duvernay shale reservoir development near Fox Creek, Alberta and the Montney tight reservoir development in Northeast British Columbia using ion-exchange sorbents. Results indicate that lithium extraction from FPW using DLE technology is a viable option, with fluid pH, temperature, total suspended solids, and organic carbon affecting extraction efficiencies. In the assessment of Duvernay-based FPW fluids processed at a selected centralized facility, approximately 93 tonnes of lithium carbonate, or 105 tonnes of lithium hydroxide monohydrate could be produced annually, based on an average lithium content of 45.1 mg/L and a capacity of approximately 475,000 m3 per year. A discounted cash flow analysis determined the after-tax and royalty internal rate of return of 22% in the production of lithium carbonate (Li2CO3), and 38% in the production of lithium hydroxide monohydrate (LiOH·H2O) from the Duvernay development area. Comparatively, in the assessment of Montney brine fluids processed at a modelled centralized facility, approximately 117 tonnes of lithium carbonate or 134 tonnes of lithium hydroxide monohydrate could be produced annually, based on an average lithium content of 57.7 mg/L and a capacity of approximately 475,000 m3 per year. A discounted cash flow analysis determined the after-tax and royalty internal rate of return of 29% in the production of lithium carbonate and 48% in the production of lithium hydroxide monohydrate from the Dawson Creek Montney development area. These findings demonstrate the economic feasibility of extracting and refining lithium into battery-grade products from a novel source based on forecasted commodity prices and the development of a domestic battery supply chain system. Further investigation of DLE technology, a strategic resource sampling and analysis program, and investigation into the minimum scale of lithium extraction development are recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call