Abstract

We aimed to investigate the feasibility of predicting high-risk cytogenetic abnormalities (HRCAs) in patients with multiple myeloma (MM) using a spinal MRI-based radiomics method. In this retrospective study, we analyzed the radiomic features of 248 lesions (HRCA [n = 111] and non-HRCA [n = 137]) using T1WI, T2WI, and fat suppression T2WI. To construct the radiomics model, the top nine most frequent radiomic features were selected using logistic regression (LR) machine-learning processes. A combined LR model incorporating radiomic features and basic clinical characteristics (age and sex) was also built. Fivefold external cross-validation was performed, and a comparative analysis of 10 random fivefold cross-validation sets was used to verify result stability. Model performance was compared by plotting receiver operating characteristic curves and the area under the curve (AUC). Comparable AUC values were observed between the radiomics model and the combined model in validation cohorts (AUC: 0.863 vs. 0.870, respectively, p = 0.206). The radiomics model had an AUC of 0.863, with a sensitivity of 0.789, a specificity of 0.787, a positive predictive value of 0.753, a negative predictive value of 0.824, and an accuracy of 0.788 in the validation cohort, which were comparable with the performance in the training cohorts. Radiomic features of routine spinal MRI reflect differences between HRCAs and non-HRCAs in patients with MM. This MRI-based radiomics model might be a useful and independent tool to predict HRCAs in patients MM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.