Abstract
Abstract A preliminary study toward consistent soil moisture products from the Advanced Microwave Scanning Radiometer 2 (AMSR2) is presented. Its predecessor, the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), has provided Earth scientists with a consistent and continuous global soil moisture dataset. A major challenge remains to achieve synergy between these soil moisture datasets, which is hampered by the lack of an overlapping observation period of the sensors. Here, observations of the multifrequency microwave radiometer on board the Tropical Rainfall Measuring Mission (TRMM) satellite were used to improve consistency between AMSR-E and AMSR2. Several scenarios to achieve synergy between the AMSR-E and AMSR2 soil moisture products were evaluated. The novel soil moisture retrievals from C-band observations, a frequency band that is lacking on board the TRMM satellite, are also presented. A global comparison of soil moisture retrievals against ERA-Interim soil moisture demonstrates the need for an intercalibration procedure. Several different scenarios based on filtering were tested, and the impact on the soil moisture retrievals was evaluated against two independent reference soil moisture datasets (reanalysis and in situ soil moisture) that cover both individual observation periods of the AMSR-E and AMSR2 sensors. Results show a high degree of consistency between both satellite products and two independent reference products for the soil moisture products retrieved from X-band observations. Care should be taken in the interpretation of the presented soil moisture products, and future research is needed to further align the AMSR2 and AMSR-E sensor calibrations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.