Abstract

Sewage sludge is an inevitable byproduct produced in wastewater treatment. Reusing nutrient-rich sludge will diminish the amount of waste ending in soil dumping areas and will promote circular economy. However, during sewage treatment process, several potentially harmful organic chemicals are retained in sludge, but proving the safety of processed sludge will promote its more extensive use in agriculture and landscaping.Environmental risk assessment of sludge requires new methods of characterizing its suitability for various circular economy applications. Bioavailable and bioaccessible fractions are key variables indicating leaching, transport, and bioaccumulation capacity. Also, sludge treatments have a significant effect on chemical status and resulting environmental risks. In this study, the concentrations of polyaromatic hydrocarbons (PAHs), triclosan (TCS), triclocarban (TCC), methyl triclosan (mTCS), and selected active pharmaceutical ingredients (APIs) were determined in different sludge treatments and fractions. Passive samplers were used to characterize the bioavailable and bioaccessible fractions, and the sampler extracts along the sludge and filtrate samples were utilized in the bioassays.The TCS and PAH concentrations did not decrease as the sludge was digested, but the contents diminished after composting. Also, mTCS concentration decreased after composting. The API concentrations were lower in digested sludge than in secondary sludge.Digested sludge was toxic for Aliivibrio fischeri, but after composting, toxicity was not observed. However, for Daphnia magna, passive sampler extracts of all sludge treatments were either acutely (immobility) or chronically (reproduction) toxic. Secondary and digested sludge sampler extracts were cytotoxic, and secondary sludge extract was also genotoxic. The measured chemical concentration levels did not explain the toxicity of the samples based on the reported toxicity thresholds.Bioassays and sampler extracts detecting bioavailable and bioaccessible contaminants in sludge are complementing tools for chemical analyses. Harmonization of these methodswill help establish scientifically sound regulative thresholds for the use of sludge in circular economy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.