Abstract

Objective: Blood pressure (BP) waveform has important meaning in the study of circulatory diseases, but its noninvasive assessment is not sufficiently user-friendly for practical applications. In the present study, we try to build up a user-friendly PPG measurement system, and study the correlation between radial BP and finger photoplethysmography (PPG) waveforms Methods: User-friendliness of a self-made PPG measurement system was improved by applying an appropriate contacting pressure on the measured finger and adapting a hand-shape mold for the finger to put on. Finger PPG and radial-artery BP signals were then measured simultaneously and noninvasively on healthy volunteers (n=?). In frequency-domain analysis performed on each 1-minute recorded data sequence, the linear regression was applied to the calculated amplitude ratios between BP and PPG waveforms. Results: After a series of testing, the PPG measurement system was found to be user-friendly and has a good reproducibility in the frequency components within the measured PPG waveform. The BP-PPG regression of amplitude ratios were all significant (R2 values all ≫0.72) for the first three harmonics. Conclusion: In the present study we built up a user-friendly PPG measurement system, and developed a frequency-domain analysis method to study the correlation between BP and PPG waveforms. We hope that the noninvasive PPG measurement system and the frequency-domain waveform analysis can provide an alternative and a more user-friendly method to reconstruct the radial BP waveform, and hence broaden the application of BP waveform analysis, which may bring deeper understanding for important circulatory diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call