Abstract

The alarming rate of global mangrove forest degradation corroborates the need for providing fast, up-to-date and accurate mangrove maps. Conventional scene by scene image classification approach is inefficient and time consuming. The development of Google Earth Engine (GEE) provides a cloud platform to access and seamlessly process large amount of freely available satellite imagery. The GEE also provides a set of the state-of-the-art classifiers for pixel-based classification that can be used for mangrove mapping. This study is an initial effort which is aimed to combine machine learning and GEE for mapping mangrove extent. We used two Landsat 8 scenes over Agats and Timika Papua area as pilot images for this study; path 102 row 64 (2014/10/19) and path 103 row 63 (2013/05/16). The first image was used to develop local training areas for the machine learning classification, while the second one was used as a test image for GEE on the cloud. A total of 838 points samples were collected representing mangroves (244), non-mangroves (161), water bodies (311), and cloud (122) class. These training areas were used by support vector machine classifier in GEE to classify the first image. The classification result show mangrove objects could be efficiently delineated by this algorithm as confirmed by visual checking. This algorithm was then applied to the second image in GEE to check the consistency of the result. A simultaneous view of both classified images shows a corresponding pattern of mangrove forest, which mean the mangrove object has been consistently delineated by the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.