Abstract

Introduction: In the past three decades, additive manufacturing (AM), also known as 3D printing, has emerged as a promising technology, which allows the manufacture of complex parts by adding material layer upon layer. In comparison, with other metal-based AM technologies, gas metal arc welding-based additive manufacturing (GMAW-based AM) presents a high deposition rate and has the potential for producing medium and large metal components. To validate the technological performance of such a manufacturing process, the internal quality of manufactured parts needs to be analyzed, particularly in the cases of manufacturing the parts working in a critical load-bearing condition. Therefore, this paper aims at investigating the internal quality (i.e., and mechanical properties) of components manufactured by the GMAW-based AM technology.
 Method: A gas metal arc welding robot was used to build a thin-walled component made of mild steel on a low-carbon substrate according to the AM principle. Thereafter, the specimens for observing and mechanical properties were extracted from the built thin-walled component. The of the specimen were observed by an optical microscope; the hardness was measured by a digital tester, and the tensile tests were carried out on a tensile test machine.
 Results: The results show that the GMAW-based AM-built thin-walled components possess an adequate that varies from the top to the bottom of the built component: structures with primary dendrites in the upper zone; granular structure of with small regions of at grain boundaries in the middle zone, and grains of in the lower zone. The hardness (ranged between 164±3.46 HV to 192±3.81 HV), yield strength (YS offset of 0.2% ranged from 340±2 to 349.67±1.53 ), and ultimate tensile strength (UTS ranged from 429±1 to 477±2 ) of the GMAW-based AM-built components were comparable to those of wrought mild steel.
 Conclusions: The results obtained in this study demonstrate that the GMAW-based AM-built components possess adequate and good mechanical properties for real applications. This allows us to confirm the feasibility of using a conventional gas metal arc welding robot for additive manufacturing or repairing/re-manufacturing of metal components.

Highlights

  • In the past three decades, additive manufacturing (AM), known as 3D printing, has emerged as a promising technology, which allows the manufacture of complex parts by adding material layer upon layer

  • The results show that the gas metal arc welding (GMAW)-based AMbuilt thin-walled components possess an adequate microstructure that varies from the top to the bottom of the built component: lamellar structures with primary austenite dendrites in the upper zone; granular structure of ferrites with small regions of pearlites at grain boundaries in the middle zone, and equiaxed grains of ferrites in the lower zone

  • The upper zone (Figure 3a) presents lamellar structures with primary austenite dendrites that distribute along the cooling direction - perpendicular to the substrate

Read more

Summary

Introduction

In the past three decades, additive manufacturing (AM), known as 3D printing, has emerged as a promising technology, which allows the manufacture of complex parts by adding material layer upon layer. With other metal-based AM technologies, gas metal arc welding-based additive manufacturing (GMAW-based AM) presents a high deposition rate and has the potential for producing medium and large metal components. Conclusions: The results obtained in this study demonstrate that the GMAW-based AM-built components possess adequate microstructure and good mechanical properties for real applications. This allows us to confirm the feasibility of using a conventional gas metal arc welding robot for additive manufacturing or repairing/re-manufacturing of metal components. In comparison with laser-based and electron beam-based AM systems, welding-based additive manufacturing - called wire arc additive manufacturing (WAAM) has demonstrated as a prospective solution for the manufacture of medium and large-dimensional metal parts 6. The arc heat source used in a WAAM system can be gas metal arc welding (GMAW), gas tung-

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call