Abstract

BackgroundFreshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment. This study was carried out to develop a computer-based image processing technique to automatically detect, recognize, and identify algae genera from the divisions Bacillariophyta, Chlorophyta and Cyanobacteria in Putrajaya Lake. Literature shows that most automated analyses and identification of algae images were limited to only one type of algae. Automated identification system for tropical freshwater algae is even non-existent and this study is partly to fill this gap.ResultsThe development of the automated freshwater algae detection system involved image preprocessing, segmentation, feature extraction and classification by using Artificial neural networks (ANN). Image preprocessing was used to improve contrast and remove noise. Image segmentation using canny edge detection algorithm was then carried out on binary image to detect the algae and its boundaries. Feature extraction process was applied to extract specific feature parameters from algae image to obtain some shape and texture features of selected algae such as shape, area, perimeter, minor and major axes, and finally Fourier spectrum with principal component analysis (PCA) was applied to extract some of algae feature texture. Artificial neural network (ANN) is used to classify algae images based on the extracted features. Feed-forward multilayer perceptron network was initialized with back propagation error algorithm, and trained with extracted database features of algae image samples. System's accuracy rate was obtained by comparing the results between the manual and automated classifying methods. The developed system was able to identify 93 images of selected freshwater algae genera from a total of 100 tested images which yielded accuracy rate of 93%.ConclusionsThis study demonstrated application of automated algae recognition of five genera of freshwater algae. The result indicated that MLP is sufficient, and can be used for classification of freshwater algae. However for future studies, application of support vector machine (SVM) and radial basis function (RBF) should be considered for better classifying as the number of algae species studied increases.

Highlights

  • Freshwater algae can be used as indicators to monitor freshwater ecosystem condition

  • Water samples were analyzed and examined by using electronic microscope Manufactured by Thermo fisher scientific company model(MTC#B1220ASA), and freshwater algae images were transferred to digital storage devices by using a Dino-Eye Eyepiece camera Manufactured by Dutech scientific company model (AM423X) which attached to the microscope lens, and connected with personal computer via USB port for image acquisition

  • In order to test the accuracy of the system testing was carried out for a total of 50 testing images that has not been used for the training of Multilayer perceptron network (MLP)

Read more

Summary

Introduction

Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. They provide early signals of worsening environment. Algae respond to wide range of pollutants. They provide an early caution signal of worsening ecological condition. They are highly sensitive to changes in their environment and a good indicator [2]. Shifts in abundance of algal species can be used to detect environmental changes, and to indicate the trophic status and nutrient problems in lake [3]. Nutrient stimulation of algal growth made algae part of the problem in the eutrophication of lakes, and trophic status of lakes can be monitored by algal taxa found in them

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call