Abstract

Flexible conductive materials are widely used in structural health monitoring; it is also known in geotechnical engineering. In this preliminary study, a strain-self-sensing smart geogrid rib was proposed to monitor the induced strain by wetting-drying cycles of the expansive soil. After the calibration, a physical modeling test was conducted with the smart geogrid rib reinforced in expansive soils under three wetting-drying cycles. Results demonstrated: that the smart geogrid rib was capable of self-sensing its strain; the strain self-sensed by the smart geogrid rib was in good agreement with that measured by FBG strain sensors before cracks were generated; it could capture the crack propagation of expansive soils during wetting-drying cycles by the discrepancy compared to FBG sensors. Further study will be continued for the mechanism of the geogrid instead of the geogrid rib and the application to real-time monitoring of the performance of the geosynthetic expansive soil slopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.