Abstract

Objectives Designing new objectively diagnostic methods of autism spectrum disorder (ASD) are burning questions. Dynamic functional connectivity (DFC) methodology based on fMRI data are an effective lever to investigate changeability evolution of signal synchronization in macroscopic neural activity patterns. Methods Embracing the network dynamics concepts, this paper introduces changeability index (-score)which is focused on time-varying aspects of FCs, and develops a new framework for researching the roots of ASD brains at resting states in holism significance. The important process is to uncover noticeable regions and subsystems endowed with antagonistic stance in -scores of between atypical and typical DFCs of 30 healthy controls (HCs) and 48 ASD patients. Results The abnormities of edge C-scores are found across widespread brain cortex in ASD brains. For whole brain regional C-scores of ASD patients, orbitofrontal middle cortex L, inferior triangular frontal gyrus L, middle occipital gyrus L, postcentral gyrus L, supramarginal L, supramarginal R, cerebellum 8 L, and cerebellum 10 Rare endowed with significantly different -scores.At brain subsystems level, C-scores in left hemisphere, right hemisphere, top hemisphere, bottom hemisphere, frontal lobe, parietal lobe, occipital lobe, cerebellum sub systems are abnormal in ASD patients. Conclusions The ASD brains have whole-brain abnormity on widespread regions. Through the strict evidence-based study, it was found that the changeability index (C-score) is a meaningful biological marker to explore cortical activity in ASD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call