Abstract

Background:Intraoperative three-dimensional fabrication of living tissues could be the next biomedical revolution in patient treatment.Approach:We developed a surgery-ready robotic three-dimensional bioprinter and demonstrated that a bioprinting procedure using medical grade hydrogel could be performed using a 6-axis robotic arm in vivo for treating burn injuries.Results:We conducted a pilot swine animal study on a deep third-degree severe burn model. We observed that the use of cell-laden bioink as treatment substantially affects skin regeneration, producing in situ fibroblast growth factor and vascular endothelial growth factor, necessary for tissue regeneration and re-epidermalization of the wound.Conclusions:We described an animal study of intraoperative three-dimensional bioprinting living tissue. This emerging technology brings the first proof of in vivo skin printing feasibility using a surgery-ready robotic arm-based bioprinter. Our positive outcome in skin regeneration, joined with this procedure’s feasibility, allow us to envision the possibility of using this innovative approach in a human clinical trial in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call