Abstract

BackgroundHaemodynamic variations normally occur in anaesthetized animals, in relation to the animal status, administered drugs, sympathetic and parasympathetic tone, fluid therapy and surgical stimulus. The possibility to measure some cardiovascular parameters, such as cardiac output (CO), during anaesthesia would be beneficial for both the anaesthesia management and its outcome. New techniques for the monitoring of CO are aimed at finding methods which are non invasive, accurate and with good trending ability, which can be used in a clinical setting. The aim of this study was to compare the Pressure Recording Analytical Method (PRAM) with the pulmonary artery thermodilution (TD) for the measurement of cardiac output in 6 anaesthetized critically ill dogs.ResultsFifty-four pairs of CO measurements were obtained with a median (range) of 3.33 L/min (0.81–7.21) for PRAM-CO and 3.48 L/min (1.41–6.56) for TD-CO. The Bland-Altman analysis showed a mean bias of 0.17 L/min with limits of agreement (LoA) of − 0.46 to 0.81 L/min. The percentage error resulted 18.2%. The 4-quadrant plot analysis showed an acceptable concordance (93%) between the 2 methods. The polar plot showed a good trending ability with the mean angular bias of 3.9° and radial LoA ± 12.1°.ConclusionsThe PRAM resulted in good precision, acceptable concordance and good trending ability for the measure of CO in the anaesthetized dog, representing a promising alternative to thermodilution for the measurement of CO. Among all the pulse contour methods available on the market it is the only one that does not require any calibration or adjustment of the measurement. Further studies are required to verify the ability of this method to accurately measure cardiac output even during unstable hemodynamic conditions.

Highlights

  • Haemodynamic variations normally occur in anaesthetized animals, in relation to the animal status, administered drugs, sympathetic and parasympathetic tone, fluid therapy and surgical stimulus

  • The objective of this study was to evaluate the performances of the Pressure Recording Analytical Method (PRAM) technology integrated in the MostCare® monitor compared to With pulmonary artery catheter (PAC)-TD for the measurement of cardiac output (CO) in selected cases in which dogs received a Swan-Ganz catheter for their clinical management

  • The percentage error in this study, calculated from the Bland-Altman plot, resulted 18%, largely acceptable for the aforementioned limit of percentage error. This value is consistent to percentage errors found in other validation studies of CO measuring methods, and even better performing than other studies involving the validation of PRAM in man [12, 18, 19, 26]

Read more

Summary

Introduction

Haemodynamic variations normally occur in anaesthetized animals, in relation to the animal status, administered drugs, sympathetic and parasympathetic tone, fluid therapy and surgical stimulus. The aim of this study was to compare the Pressure Recording Analytical Method (PRAM) with the pulmonary artery thermodilution (TD) for the measurement of cardiac output in 6 anaesthetized critically ill dogs. The use of PAC-TD in clinical practice is limited, mainly because of additional costs and risks associated with pulmonary artery catheterization [7] For this reason, in the last years less invasive procedures, such as pulse contour monitors, are under evaluation in order to find new techniques that can be used for the CO evaluation. Pressure Recording Analytical Method (PRAM) is a pulse contour method, which estimates stroke volume and other hemodynamic parameters from the analysis of the arterial pulse waveform [12]. In addition to the CO, heart rate, systolic, diastolic and mean arterial pressures, pulse pressure, systolic pressure, pulse pressure variation (PPV), stroke volume (SV) and stroke volume variation (SVV) are continuously provided by the monitor [13, 14]

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.