Abstract

Background and purpose: To evaluate the feasibility of dose-guided adaptive radiotherapy (ART) based on deformable image registration (DIR) using fractional megavoltage cone-beam CT (MVCBCT) images from Halcyon system that uses identical beams for treatment and imaging and to retrospectively investigate the influence of anatomic changes on target coverage and organ-at-risk (OAR) sparing across various tumor sites.Materials and Methods: Four hundred twenty-two MVCBCT images from 16 patients (three head and neck, seven thoracic, three abdominal, and three pelvic cases) treated in a phase II clinical trial for Halcyon were selected. DIR between the planning CT and daily MVCBCT image was implemented by Velocity software to create pseudo CT. To investigate the accuracy of dose calculation on pseudo CT, three evaluation patients with rescanned CT and adaptive plans were selected. Dose distribution of adaptive plans calculated on pseudo CT was compared with that calculated on the rescanned planning CT on the three evaluation patients. To investigate the impact of inter-fractional anatomic changes on target dose coverage and dose to OARs of the 16 patients, fractional dose was calculated and accumulated incrementally based on deformable registration between planning CT and daily MVCBCT images.Results: Passing rates using 3 mm/3%/10% threshold local gamma analysis were 93.04, 96.00, and 91.68%, respectively, for the three evaluation patients between the reconstructed dose on pseudo CT (MVCBCT) and rescanned CT, where accumulated dose deviations of over 97% voxels were smaller than 0.5 Gy. Planning target volume (PTV) D95% and D90% (the minimum dose received by at least 95/90% of the volume) of the accumulated dose could be as low as 93.8 and 94.5% of the planned dose, respectively. OAR overdose of various degrees were observed in the 16 patients relative to the planned dose. In most cases, OARs' dose volume histogram (DVH) lines of accumulated and planned dose were very close to each other if not overlapping. Among cases with visible deviations, the differences were bilateral without apparent patterns specific to tumor sites or organs.Conclusion: As a confidence building measure, this simulation study suggested the possibility of ART for Halcyon based on DIR between planning CT and MVCBCT. Preliminary clinical data suggested the benefit of patient-specific dose reconstruction and ART to avoid unacceptable target underdosage and OAR overdosage.

Highlights

  • Anatomic changes during the treatment course are one of the leading contributors of delivered dose uncertainties in radiotherapy, potentially causing underdosage to the targets or overdosage to organs at risk (OAR) relative to the planned dose distribution [1, 2]

  • This work aims to test the feasibility of fractional dose reconstruction and accumulation on the Halcyon image-guided radiotherapy (IGRT) system based on MV cone-beam CT (MVCBCT), potentially making dose-guided Adaptive radiotherapy (ART) possible on this new platform

  • Since the maximum reconstructed field of view of Halcyon MVCBCT was 27.6 cm × 27.6 cm × 28 cm, which might be smaller than the patient size, the MVCBCT was patched with the outside of the patient from the planning CT

Read more

Summary

Introduction

Anatomic changes during the treatment course are one of the leading contributors of delivered dose uncertainties in radiotherapy, potentially causing underdosage to the targets or overdosage to organs at risk (OAR) relative to the planned dose distribution [1, 2]. Fractional image guidance has been made compulsory on Halcyon, which takes a shorter scanning time (∼15 s per MVCBCT acquisition) than the conventional CBCT due to a faster gantry rotation speed (up to 4 RPM) These new features are quite different from those of the MVision system (Siemens Medical Solutions, Concord, CA) [20], potentially making Halcyon a suitable system for ART. To evaluate the feasibility of dose-guided adaptive radiotherapy (ART) based on deformable image registration (DIR) using fractional megavoltage cone-beam CT (MVCBCT) images from Halcyon system that uses identical beams for treatment and imaging and to retrospectively investigate the influence of anatomic changes on target coverage and organ-at-risk (OAR) sparing across various tumor sites

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call