Abstract

The problem of transformation of rainfall data from one scale to another has been gaining considerable importance in recent years. Though the application of the concept of fractal theory, in the studies conducted thus far, nearly unanimously points at the possibility of such a transformation, the suitability of the theory to the highly variable rainfall in time and space has very often been questioned. A preliminary attempt is made herein to address this issue by investigating the existence of temporal scaling behaviour in rainfall data observed in two different climatic regions: (a) a subtropical climatic region (Leaf River basin, Mississippi, USA) and (b) an equatorial climatic region (Singapore). Rainfall data of three different resolutions, six-hourly, daily, and weekly, observed over a period of 25 years, are investigated. A mono- or simple-scaling method (box dimension method) is employed. The results achieved for the different data sets clearly indicate the existence of temporal scaling in rainfall observed in the two regions, an encouraging news on the suitability of fractal theory in understanding and modelling the rainfall process. However, the insufficiency of a single dimension to characterize the rainfall behaviour is realized, as the dimension depends on the rainfall intensity level, which, in turn, may be related to the rainfall generating mechanisms. A comparison of the box-dimension results obtained for data of different resolutions, from each of the regions, seems to indicate a possible connection between them, a prospect of tremendous practical importance. Another interesting observation is the similarity between the box dimension results obtained for rainfall data from Leaf River basin and Singapore, but this is also clearly related to the intensity level. The dependence of the dimension on the intensity threshold suggests the use of a multi-dimensional fractal approach, where the process is characterized by more than one dimension (or a dimension function) instead of one single dimension. On the basis of the present results, some potential areas for further study are identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call