Abstract

In the present study, an experimental study on design parameters of an air induction nozzle was performed. These nozzles are capable of producing large size droplets, including microbubbles, which in turn results in high drift reduction. A magnified 2D version of an air induction nozzle was designed and manufactured. The manufactured geometries have the ability to be disassembled easily, thus several geometrical parameters are replaced sequentially. The effects of a venturi throat, air orifices and discharge orifice diameters along with the length of the mixing chamber are analyzed. Analysis of the parameters revealed their strength of prediction on the air liquid ratio and the nozzle performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.