Abstract

Nitinol, a shape memory alloy, is flexible at low temperatures but retains its original shape when heated. This offers interesting possibilities for scoliosis correction. Of the shape memory alloys, nitinol is the most promising medically because of biocompatibility and the ability to control transition temperature. In vivo: Six goats with experimental scoliosis were instrumented with 6-mm nitinol rods. The rods were transformed, and the scoliosis corrected, in the awakened goats by 450-kHz radio frequency induction heating. The curves averaged 41 degrees before instrumentation, 33 degrees after instrumentation, and 11 degrees after rod transformation. The animals tolerated the heating without discomfort, neurologic injury, or evidence of thermal injury to the tissues or the spinal cord. In vitro: Nitinol rods were tested under both constant deflection and constant loading conditions and plotted temperature versus either force or displacement. The 6-mm rod generated forces of 200 N. The 9-mm rod generated up to 500 N. We safely coupled shape memory alloy transformation to the spine and corrected an experimental spinal deformity in awake animals. The forces generated can be estimated by the rod's curvature and temperature. The use of shape memory alloys allows continuous neurologic monitoring during awake correction, true rotational correction by rod torsion, and the potential option of periodic correction to take advantage of spinal viscoelasticity and the potential of true rotational correction by rod torsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call