Abstract

The field of Cyber-Physical Systems (CPS) is increasingly recognizing the importance of integrating Human Factors for Human-in-the-loop CPS (HiLCPS) developments. This is because psychological, physiological, and behavioral characteristics of humans can be used to predict human-machine interactions. The goal of this pilot study is to collect initial data to determine whether driving and eye tracking metrics can provide evidence of learning for a CPS project. Six participants performed a series of 12 repeated obstacle avoidance tasks in manual driving. Lane deviations and fixation-related eye data were recorded for each trial. Overall, participants displayed either conservation/safe or aggressive/risky in their lateral position with respect to the obstacle during successive trials. Also, eye tracking metrics were not significantly affected by trial number, but observational trends suggest their potential for aiding in understanding adjustments humans make in learning. Results can inform predictive modeling algorithms that can anticipate and mitigate potential problems in real-time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.