Abstract

An active intraocular prosthesis is herein proposed as a new image acquisition device for a cortical visual prosthesis. A conventional intraocular prosthesis is a passive device that helps blind patients underwent eye enucleation to maintain the shape of an eyeball. In contrast, an active intraocular prosthesis, which works as an implantable wireless camera, can capture real-time images and transmit them to a cortical visual prosthesis to restore partial vision of the patients. This active device has distinct advantages in that it can garner a variety of image information while focusing on objects in accordance with natural eye movements, compared with a glasses-mounted camera and implanted micro-photodiodes in typical artificial vision systems. Coated with an epoxy and sealed by an elastomer for biocompatibility as well as durability, the active intraocular prosthesis was fabricated in a spherical form miniaturized enough to be inserted into the eye. Its operation was evaluated by wireless image acquisition displaying a processed gray-scale image. Furthermore, signal-to-noise ratio measurements were conducted to find a reliable communication range of the fabricated prosthesis, while it was covered by an 8-mm-thick biological medium that mimicked in vivo environments. In conclusion, the feasibility of the active intraocular prosthesis to cooperate with a cortical visual prosthesis is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.