Abstract

The Weather Research and Forecasting model was used to test the sensitivity of Typhoon Haiyan (2013) to the use of a cumulus parameterization scheme, specifically the revised Kain–Fritsch (rKF) scheme, at high horizontal resolutions with grid spacing varying from 9 to 2 km. The rKF scheme simulated the typhoon in best agreement with the observation compared with other schemes, but some fundamental drawbacks relating the rKF scheme, e.g., neglecting the momentum adjustment and being less applicable to high-resolution modeling than multi-scaled schemes, could influence the results and were discussed. Initial results showed that the typhoon track simulations benefited little from the use of the rKF scheme or a fine resolution, partially because of the similar large-scale steering flows induced by the analyzed boundary conditions used in each simulation. The influences of using the rKF scheme on typhoon intensity, size, structure, and precipitation were dependent on the grid spacing, and the most apparent changes occurred near a grid length of 4 km. At 9–4-km grid spacings, using the rKF scheme produced typhoons much stronger with more rainfall and surface latent heat flux than did using no cumulus parameterization scheme. At 3- or 2-km grid spacing, using the rKF scheme caused little changes on typhoon intensity, and the changes in precipitation and surface latent heat flux were relatively small. These results suggested that the grid spacing of 2 km for simulations using no cumulus parameterization scheme or the grid spacing of 4 km for simulations using the rKF scheme facilitated reproducing the observed Typhoon Haiyan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call