Abstract
Alkaline proteases in the posterior midgut of the face fly, Musca autumnalis De Geer, were identified using specific synthetic substrates and nonspecific substrate azocasein. Identification was confirmed with potential protease activators and inhibitors. Optimal azocasein hydrolysis occurred at pH 8.0 and substrate hydrolysis was inhibited by EGTA (ethyleneglycol-bis-(2-aminoethyl ether)-N,N-tetraacetic acid), tosyl-L-lysine chloromethyl ketone (TLCK), and soybean trypsin inhibitor (STI). Tryptic proteolysis was identified by maximal hydrolysis, at pH 8.0, of trypsin specific substrates BAPNA (benzoyl-DL-arginine-p-nitroanilide) and TAME (tosyl-L-arginine methyl ester). TAME hydrolysis was inhibited by PMSF (phenylmethylsulfonyl fluoride), STI, pepstatin A, and dithiothreitol (DTT), but BAPNA hydrolysis was inhibited only by STI and DTT. Chymotrypsin was demonstrated by maximal hydrolysis of BTEE (benzoyl-L-tyrosine ethyl ester) at pH 8.0 and DTT, PMSF, and STI inhibited hydrolysis of this substrate. Aminopeptidase activity was demonstrated by maximal hydrolysis of leucine-p-nitro-anilide at pH 8.0 and the peptidase was inhibited by o-phenanthroline. Carboxypeptidase A-like enzyme hydrolyzed hippuryl-DL-phenyllactic acid maximally at pH 7.5 and carboxypeptidase B showed maximum hydrolysis of hippuryl-L-arginine at pH 7.0. Both carboxypeptidases were inhibited by EDTA (ethylene diamine tetraacetic acid), EGTA, and DTT and carboxypeptidase A was also inhibited by PMSF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.