Abstract

High precision is optimal in prehospital diagnostic algorithms for strokes and large vessel occlusions. We hypothesized that prehospital diagnostic algorithms for strokes and their subcategories using machine learning could have high predictive value. Consecutive adult patients with suspected stroke as per emergency medical service personnel were enrolled in a prospective multicenter observational study in 12 hospitals in Japan. Five diagnostic algorithms using machine learning, including logistic regression, random forest, support vector machine, and eXtreme Gradient Boosting, were evaluated for stroke and subcategories including acute ischemic stroke with/without large vessel occlusions, intracranial hemorrhage, and subarachnoid hemorrhage. Of the 1446 patients in the analysis, 1156 (80%) were randomly included in the training (derivation) cohort and cohorts, and 290 (20%) were included in the test (validation) cohort. In the diagnostic algorithms for strokes using eXtreme Gradient Boosting had the highest diagnostic value (test data, area under the receiver operating curve 0.980). In the diagnostic algorithms for the subcategories using eXtreme Gradient Boosting had a high predictive value (test data, area under the receiver operating curve, acute ischemic stroke with/without large vessel occlusions 0.898/0.882, intracranial hemorrhage 0.866, subarachnoid hemorrhage 0.926). Prehospital diagnostic algorithms using machine learning had high predictive value for strokes and their subcategories.

Highlights

  • High precision is optimal in prehospital diagnostic algorithms for strokes and large vessel occlusions

  • It can be technically feasible that Emergency medical services (EMS) personnel input required data for the predicting algorithm at the scene using tablet PCs and that the EMS and hospital personnel utilize the results of prediction, which may contribute to improving a quality of prehospital care

  • The machine learning approach is a potential solution to improve precision, as we have demonstrated in this study

Read more

Summary

Introduction

High precision is optimal in prehospital diagnostic algorithms for strokes and large vessel occlusions. We hypothesized that prehospital diagnostic algorithms for strokes and their subcategories using machine learning could have high predictive value. Five diagnostic algorithms using machine learning, including logistic regression, random forest, support vector machine, and eXtreme Gradient Boosting, were evaluated for stroke and subcategories including acute ischemic stroke with/without large vessel occlusions, intracranial hemorrhage, and subarachnoid hemorrhage. In the diagnostic algorithms for strokes using eXtreme Gradient Boosting had the highest diagnostic value (test data, area under the receiver operating curve 0.980). In the diagnostic algorithms for the subcategories using eXtreme Gradient Boosting had a high predictive value (test data, area under the receiver operating curve, acute ischemic stroke with/without large vessel occlusions 0.898/0.882, intracranial hemorrhage 0.866, subarachnoid hemorrhage 0.926). We prospectively enrolled a large cohort of patients with suspected stroke in prehospital settings and analyzed them using five machine learning algorithms

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call