Abstract

AbstractIncreases in wildfire activity and rainfall intensification are driving more postfire debris flows (PFDF) in many regions around the world. PFDFs are most common in the first postfire year and may even occur before a fire is fully controlled. This underscores the importance of assessing postfire hazards before a fire starts. Evaluation of PFDF hazards prior to fire can help strategize interventions lessening the negative effects of future fires. However, debris‐flow runout and inundation analyses are not routine in PFDF hazard assessments, partially due to time constraints and substantial uncertainties in boundary conditions. Here, we propose a prefire PFDF inundation assessment framework using a debris‐flow runout model based on the Herschel‐Bulkley (HB) rheology (HEC‐RAS v6.1). We constrain model inputs and parameters using Bayesian posterior analysis, rainfall‐runoff simulations, and a debris‐flow volume model. We use observations from recent PFDF incidents in northern Arizona, USA, to calibrate model components and then apply our prefire inundation assessment framework in a nearby unburned area. Specifically, we (a) identify yield stress as the most influential factor on inundation extent and arrival time in a HB model, (b) establish posterior distributions for model parameters suitable for forward modeling by leveraging uncertainties in field observations, and (c) implement a predictive forward analysis in an area that has not burned recently to evaluate PFDF inundation under several future fire scenarios. This study improves our ability to assess postfire debris‐flow hazards before a fire begins and provides guidance for future applications of single‐phase rheological models when assessing PFDF hazards.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.