Abstract

In this paper, we introduce a new numerical scheme, based on the ADI (alternating direction implicit) method, to price American put options with a stochastic volatility model. Upon applying a front-fixing transformation to transform the unknown free boundary into a known and fixed boundary in the transformed space, a predictor–corrector finite difference scheme is then developed to solve for the optimal exercise price and the option values simultaneously. Based on the local von Neumann stability analysis, a stability requirement is theoretically obtained first and then tested numerically. It is shown that the instability introduced by the predictor can be damped, to some extent, by the ADI method that is used in the corrector. The results of various numerical experiments show that this new approach is fast and accurate, and can be easily extended to other types of financial derivatives with an American-style exercise. Another key contribution of this paper is the proposition of a set of appropriate boundary conditions, particularly in the volatility direction, upon realizing that appropriate boundary conditions in the volatility direction for stochastic volatility models appear to be controversial in the literature. A sound justification is also provided for the proposed boundary conditions mathematically as well as financially.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.