Abstract
In this paper, the second order cone programming problem is studied. By introducing a parameter into the Fischer-Burmeister function, a predictor-corrector smoothing Newton method for solving the problem is presented. The proposed algorithm does neither have restrictions on its starting point nor need additional computation which keep the iteration sequence staying in the given neighborhood. Furthermore, the global and the local quadratic convergence of the algorithm are obtained, among others, the local quadratic convergence of the algorithm is established without strict complementarity. Preliminary numerical results indicate that the algorithm is effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.