Abstract

A predictive torque and flux control algorithm for the synchronous reluctance machine is presented in this paper. The algorithm realizes a voltage space phasor preselection, followed by the computation of the switching instants for the optimum switching space phasor, with the advantages of inherently constant switching frequency and time equidistant implementation on a DSP-based system. The criteria on how to choose the appropriate voltage space phasor depend on the state of the machine and the deviations of torque and flux at the end of the cycle. In order to obtain an appropriate model of the machine, it has been developed on a d-q frame of coordinates attached to the rotor and takes into account the magnetic saturation in both d-q axes and the cross-saturation phenomenon between both axes. Therefore, high-performance torque control is achieved, and the torque ripple is reduced. Simulated and experimental results using a DSP/field-programmable-gate-array-based control and a commercially available machine show the validity of the proposed control scheme

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.