Abstract

Coupled thermal-electric computational mechanics techniques have been developed to understand the temperature distribution along a special design spring and cantilever probe body in order to model the probe burn phenomenon for conduction. The experimental maximum current carrying capability tests have been performed and compared with numerical solutions. Reasonably good agreement was observed between experimental and numerical results. A predictive model was developed as a design tool to enable faster probe design for cantilever or vertical types, assembly and test cycle for a wafer sort environment. In addition to the first mode, transient heat transfer between a heated spring probe and its close environment is investigated. A continuum finite volume simulation is used to analyze the heat flow within and from the resistively heated probe to its environment. Experimental results are conducted for spring probe with laminar air flow and without air flow. The numerical and experimental results are compared and high similarity is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.