Abstract

Targeted cancer therapies that use genetics are successful, but principles for selectively targeting tumor metabolism that is also dependent on the environment remain unknown. We now show that differences in rate-controlling enzymes during the Warburg effect (WE), the most prominent hallmark of cancer cell metabolism, can be used to predict a response to targeting glucose metabolism. We establish a natural product, koningic acid (KA), to be a selective inhibitor of GAPDH, an enzyme we characterize to have differential control properties over metabolism during the WE. With machine learning and integrated pharmacogenomics and metabolomics, we demonstrate that KA efficacy is not determined by the status of individual genes, but by the quantitative extent of the WE, leading to a therapeutic window invivo. Thus, the basis of targeting the WE can be encoded by molecular principles that extend beyond the status of individual genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.