Abstract
We constructed an early prediction model for postoperative pulmonary complications after thoracoscopic surgery using machine learning and deep learning algorithms. The artificial intelligence prediction models were built in Python, primarily using artificial intelligencealgorithms including both machine learning and deep learning algorithms. Correlation analysis showed that postoperative pulmonary complications were positively correlated with age and surgery duration, and negatively correlated with serum albumin. Using the light gradient boosting machine(LGBM) algorithm, weighted feature engineering revealed that single lung ventilation duration, history of smoking, surgery duration, ASA score, and blood glucose were the main factors associated with postoperative pulmonary complications. Results of artificial intelligence algorithms for predicting pulmonary complications after thoracoscopy in the test group: In terms of accuracy, the two best algorithms were Logistic Regression (0.831) and light gradient boosting machine(0.827); in terms of precision, the two best algorithms were Gradient Boosting (0.75) and light gradient boosting machine (0.742); in terms of recall, the three best algorithms were gaussian naive bayes (0.581), Logistic Regression (0.532), and pruning Bayesian neural network (0.516); in terms of F1 score, the two best algorithms were LogisticRegression (0.589) and pruning Bayesian neural network (0.566); and in terms of Area Under Curve(AUC), the two best algorithms were light gradient boosting machine(0.873) and pruning Bayesian neural network (0.869). The results of this study suggest that pruning Bayesian neural network (PBNN) can be used to assess the possibility of pulmonary complications after thoracoscopy, and to identify high-risk groups prior to surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.