Abstract

BackgroundGenomic selection has been successfully implemented in plant and animal breeding programs to shorten generation intervals and accelerate genetic progress per unit of time. In practice, genomic selection can be used to improve several correlated traits simultaneously via multiple-trait prediction, which exploits correlations between traits. However, few studies have explored multiple-trait genomic selection. Our aim was to infer genetic correlations between three traits measured in broiler chickens by exploring kinship matrices based on a linear combination of measures of pedigree and marker-based relatedness. A predictive assessment was used to gauge genetic correlations.MethodsA multivariate genomic best linear unbiased prediction model was designed to combine information from pedigree and genome-wide markers in order to assess genetic correlations between three complex traits in chickens, i.e. body weight at 35 days of age (BW), ultrasound area of breast meat (BM) and hen-house egg production (HHP). A dataset with 1351 birds that were genotyped with the 600 K Affymetrix platform was used. A kinship kernel (K) was constructed as K = λG + (1 − λ)A, where A is the numerator relationship matrix, measuring pedigree-based relatedness, and G is a genomic relationship matrix. The weight (λ) assigned to each source of information varied over the grid λ = (0, 0.2, 0.4, 0.6, 0.8, 1). Maximum likelihood estimates of heritability and genetic correlations were obtained at each λ, and the “optimum” λ was determined using cross-validation.ResultsEstimates of genetic correlations were affected by the weight placed on the source of information used to build K. For example, the genetic correlation between BW–HHP and BM–HHP changed markedly when λ varied from 0 (only A used for measuring relatedness) to 1 (only genomic information used). As λ increased, predictive correlations (correlation between observed phenotypes and predicted breeding values) increased and mean-squared predictive error decreased. However, the improvement in predictive ability was not monotonic, with an optimum found at some 0 < λ < 1, i.e., when both sources of information were used together.ConclusionsOur findings indicate that multiple-trait prediction may benefit from combining pedigree and marker information. Also, it appeared that expected correlated responses to selection computed from standard theory may differ from realized responses. The predictive assessment provided a metric for performance evaluation as well as a means for expressing uncertainty of outcomes of multiple-trait selection.

Highlights

  • Genomic selection has been successfully implemented in plant and animal breeding programs to shorten generation intervals and accelerate genetic progress per unit of time

  • A low to moderate heritability was found for BW, breast meat (BM) and hen-house egg production (HHP)

  • Research with simulated and real data has consistently shown that single-trait genomic best linear unbiased prediction model (GBLUP) displays slightly better prediction accuracy when a trait is affected by a large number of quantitative trait loci (QTL) with small effects and as well as other genomic prediction methods for most traits [33, 34]

Read more

Summary

Introduction

Genomic selection has been successfully implemented in plant and animal breeding programs to shorten generation intervals and accelerate genetic progress per unit of time. The increasing availability of genome-wide dense molecular markers [e.g., single nucleotide polymorphisms (SNPs)] has opened new avenues for obtaining additional genetic gain in breeding of elite animals and plants by exploiting “genomic selection” methods. These techniques have become important tools in modern breeding programs [1, 2]. A multiple-trait analysis requires knowledge of phenotypic and genetic correlations among characters [7] These correlations indicate the extent to which measurements on one trait inform about other traits [11], and predictions based on single-trait models do not exploit the extra information provided by other traits

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call