Abstract

The equilibrium adsorption of three small basic proteins was measured on cation exchangers under various solution conditions and was used as the basis for developing a predictive approach for correlating adsorption behavior. A mechanistically based isotherm model is used to model the equilibrium adsorption so as to facilitate isotherm prediction using minimal experimental data. The model explicitly considers the contributions of protein-surface and protein-protein interactions, and decoupling them allows each to be correlated with different experimental measurements. Specifically, protein-surface interactions are related to chromatographic data in the form of the isocratic retention factor (k'), while protein-protein interactions are analyzed on the basis of high-coverage isotherm data on an arbitrary stationary phase. Analysis of experimental data within this framework reveals a high level of consistency. The model is also used to facilitate prediction of adsorption isotherms on other ion-exchange media using isotherms on one adsorbent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call