Abstract
The equilibrium adsorption of three small basic proteins was measured on cation exchangers under various solution conditions and was used as the basis for developing a predictive approach for correlating adsorption behavior. A mechanistically based isotherm model is used to model the equilibrium adsorption so as to facilitate isotherm prediction using minimal experimental data. The model explicitly considers the contributions of protein-surface and protein-protein interactions, and decoupling them allows each to be correlated with different experimental measurements. Specifically, protein-surface interactions are related to chromatographic data in the form of the isocratic retention factor (k'), while protein-protein interactions are analyzed on the basis of high-coverage isotherm data on an arbitrary stationary phase. Analysis of experimental data within this framework reveals a high level of consistency. The model is also used to facilitate prediction of adsorption isotherms on other ion-exchange media using isotherms on one adsorbent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.