Abstract

AbstractThe gas concentration and pressure effects on the shear viscosity of molten polymers were modeled by using a unified approach based on a free volume theory. A concentration and pressure dependent “shift factor,” which accounts for free volume changes associated with polymer‐gas mixing and with variation of absolute pressure as well as for dilution effects, has been herein used to scale the pure polymer viscosity, as evaluated at the same temperature and atmospheric pressure. The expression of the free volume of the polymer/gas mixture was obtained by using the Simha and Somcynsky equation of state for multicomponent fluids. Experimental shear viscosity data, obtained for poly(ε‐caprolactone) with nitrogen and carbon dioxide were successfully predicted by using this approach. Good agreement with predictions was also found in the case of viscosity data reported in the literature for polystyrene and poly(dimethylsiloxane) with carbon dioxide. Free volume arguments have also been used to predict the Tg depression for polystyrene/carbon dioxide and for poly(methyl methacrylate)/carbon dioxide mixtures, based on calculations performed, again, with the Simha and Somcynsky theory. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1863–1873, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.