Abstract

This study employs predictive analytics to develop a decision support system for the prediction of recidivism in drug courts. Based on the input from subject matter experts, recidivism is defined as the violation of the treatment program requirements within three years after admission. We use two data processing methods to improve the accuracy of predictions: synthetic minority oversampling and survival data mining. The former creates a balanced data set and the latter boosts the model’s performance by adding several new, informative variables to the data set. After running several tree-based machine learning algorithms on the input data, random forest achieved the best performance (AUROC = 0.884, accuracy = 80.76%). Compared with the original data, oversampling and survival data mining increased AUROC by 0.068 and 0.018, respectively. Their combined contribution to AUROC was 0.088. We present a simplified version of decision rules and explain how the decision support system can be deployed. Therefore, this paper contributes to the analytics literature by illustrating how date/time variables - in applications where the response variable is defined as the occurrence of some event within a certain period - can be used in data management to improve the performance of predictive models and the resulting decision support systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.