Abstract

Friction between crystalline bodies is described in a model that unifies elements of dislocation drag, contact mechanics, and interface theory. An analytic expression for the friction force between solids suggests that dislocation drag accounts for many of the observed phenomena related to solid–solid sliding. Included in this approach are strong arguments for agreement with friction dependence on temperature, velocity, orientation, and more general materials selection effects. It is shown that calculations of friction coefficients for sliding contacts are in good agreement with available experimental values reported from ultrahigh vacuum experiments. Extensions of this model include solutions for common types of dislocation barriers or defects. The effects of third-body solid lubricants, superplasticity, superconductivity, the Aubry transition, and supersonic dislocation motion are all discussed in the framework of dislocation-mediated friction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.